Form-invariant solution to quantum state on the sphere
نویسندگان
چکیده
منابع مشابه
Conformally invariant trilinear forms on the sphere
To each complex number λ is associated a representation πλ of the conformal group SO0(1, n) on C∞(Sn−1) (spherical principal series). For three values λ1, λ2, λ3, we construct a trilinear form on C∞(Sn−1)×C∞(Sn−1)×C∞(Sn−1), which is invariant by πλ1 ⊗πλ2 ⊗ πλ3 . The trilinear form, first defined for (λ1, λ2, λ3) in an open set of C is extended meromorphically, with simple poles located in an ex...
متن کاملTime-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection
Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...
متن کاملImproved quantum hard-sphere ground-state equations of state.
The London ground-state energy formula as a function of number density for a system of identical boson hard spheres, corrected for the reduced mass of a pair of particles in a "sphere-of-influence" picture, and generalized to fermion hard-sphere systems with two and four intrinsic degrees of freedom, has a double-pole at the ultimate regular (or periodic, e.g., face-centered-cubic) close-packin...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملSpherical Spline Solution to a PDE on the Sphere
We use splines on spherical triangulations to approximate the solution of a second order elliptic PDE over the unit sphere. We establish existence and uniqueness of weak solutions in spherical spline spaces and estimate convergence of the spline approximations. We present a computational algorithm and summarize numerical results on convergence rates. §
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics Communications
سال: 2020
ISSN: 2399-6528
DOI: 10.1088/2399-6528/aba9fa